Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Electroanalysis ; 2023.
Article in English | Scopus | ID: covidwho-2252494

ABSTRACT

To address the lack of functional monomer diversity for the electrosynthesis of protein-selective molecularly imprinted polymers (MIPs), we introduce a new concept able to lead to a new class of functional monomers. This is based on conjugating an electropolymerizable monomer unit (umbelliferone) to an amino acid for closer mimicking of protein-based natural affinity ligands such as antibodies. As the first representative of this class of monomers an aspartate-umbelliferone (Asp-UMB) conjugate was synthesized and here we provide the proof for its suitability to generate highly affine MIPs for proteins by epitope imprinting. As model we used a heptapeptide (GFNCYFP) stemming from the receptor binding domain (RBD) of the SARS-CoV-2 spike protein to generate epitope-imprinted polymers able to recognize the parent RBD protein. For rapid optimization and assessment of the binding kinetics we prepared MIP microarrays on surface plasmon resonance imaging (SPRi) chips. First the peptides were microspotted on the bare gold surface of the chips followed by the electropolymerization of Asp-UMB. This resulted in ca. 2 nm thick, highly uniform, and electrically insulating polymer film, well suited both for hierarchical epitope imprinting and SPRi read-out. Taking advantage also of the on-chip optimization enabled by the microarray format the increased functional diversity of the new monomer resulted in highly affine MIPs with equilibrium dissociation constants in the lower picomolar range. © 2023 The Authors. Electroanalysis published by Wiley-VCH GmbH.

2.
TrAC - Trends in Analytical Chemistry ; 160 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2248145

ABSTRACT

Recent years have been associated with the development of various sensor-based technologies in response to the undeniable need for the rapid and precise analysis of an immense variety of pharmaceuticals. In this regard, special attention has been paid to the design and fabrication of sensing platforms based on electrochemical detection methods as they can offer many advantages, such as portability, ease of use, relatively cheap instruments, and fast response times. Carbon paste electrodes (CPEs) are among the most promising conductive electrodes due to their beneficial properties, including ease of electrode modification, facile surface renewability, low background currents, and the ability to modify with different analytes. However, their widespread use is affected by the lack of sufficient selectivity of CPEs. Molecularly imprinted polymers (MIPs) composed of tailor-made cavities for specific target molecules are appealing complementary additives that can overcome this limitation. Accordingly, adding MIP to the carbon paste matrix can contribute to the required selectivity of sensing platforms. This review aims to present a categorized report on the recent research and the outcomes in the combinatory fields of MIPs and CPEs for determining pharmaceuticals in complex and simple matrices. CPEs modified with MIPs of various pharmaceutical compounds, including analgesic drugs, antibiotics, antivirals, cardiovascular drugs, as well as therapeutic agents affecting the central nervous system (CNS), will be addressed in detail.Copyright © 2023 Elsevier B.V.

3.
Biosensors (Basel) ; 12(9)2022 Sep 19.
Article in English | MEDLINE | ID: covidwho-2258345

ABSTRACT

Molecularly imprinted polymers (MIPs) are widely used as modifiers in electrochemical sensors due to their high sensitivity and promise of inexpensive mass manufacturing. Here, we propose and demonstrate a novel MIP-sensor that can measure the electrochemical activity of favipiravir (FAV) as an antiviral drug, thereby enabling quantification of the concentration of FAV in biological and river water samples and in real-time. MOF nanoparticles' application with various shapes to determine FAV at nanomolar concentrations was described. Two different MOF nanoparticle shapes (dodecahedron and sheets) were systematically compared to evaluate the electrochemical performance of FAV. After carefully examining two different morphologies of MIP-Co-Ni@MOF, the nanosheet form showed a higher performance and efficiency than the nanododecahedron. When MIP-Co/Ni@MOF-based and NIP-Co/Ni@MOF electrodes (nanosheets) were used instead, the minimum target concentrations detected were 7.5 × 10-11 (MIP-Co-Ni@MOF) and 8.17 × 10-9 M (NIP-Co-Ni@MOF), respectively. This is a significant improvement (>102), which is assigned to the large active surface area and high fraction of surface atoms, increasing the amount of greater analyte adsorption during binding. Therefore, water-dispersible MIP-Co-Ni@MOF nanosheets were successfully applied for trace-level determination of FAV in biological and water samples. Our findings seem to provide useful guidance in the molecularly imprinted polymer design of MOF-based materials to help establish quantitative rules in designing MOF-based sensors for point of care (POC) systems.


Subject(s)
Molecular Imprinting , Amides , Antiviral Agents , Electrochemical Techniques , Electrodes , Metals , Molecularly Imprinted Polymers , Polymers , Pyrazines , Water
4.
Biosensors and Bioelectronics: X ; 12, 2022.
Article in English | EMBASE | ID: covidwho-2246489

ABSTRACT

There seems to be a growing curiosity for utilizing MIPs to recognize molecules that can be applied in numerous fields, such as biomimetic antibodies, detection of viruses and bacteria, the broad range of sensing devices, etc., owing to its scalability and economic viability. MIPs have higher thermal and chemical stability, delivering a promising potential for recognizing bacteria and viruses. The bacteria and virus imprinted polymer exhibit elongated product life-time, reproducible fabrication, robustness, reusability, sensitivity, and high target selectivity. Moreover, the MIPs could give consistent screening along with negligible false positive/negative outcomes, which is vital for the control and prevention of viral and bacterial infections. In the viral and bacterial imprinting process, critical aspects, such as compositional complexity, fragility, solubility, and target size, should be systematically evaluated and analytically considered. Although, the application of MIPs has a number of drawbacks and challenges that require solving to develop sensing platforms with high specificity and sensitivity for clinical application. In the present review, current progress and advancement regarding the reasoning and applications of MIPs as recognition molecules in various biosensors for detecting bacteria and viruses and its existing noteworthy challenges along with future perspectives are also reflected.

5.
Talanta ; 253: 123907, 2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2008140

ABSTRACT

A cost-effective, highly selective and sensitive paper-based potentiometric combined sensor for losartan potassium drug (LOS) is fabricated, characterized and used for the drug monitoring. The sensor consists of 2 strips of filter paper (20 × 5 mm each) as platform, each imprinted with 4 mm diameter circular spot of carbon. One carbon spot is covered by a reduced graphene oxide (rGO) for use as a substrate for the recognition sensor and the other without rGO is used for the reference electrode. LOS molecularly imprinted drug polymer (MIP) is applied onto the graphene oxide containing strip to act as a drug recognition sensing material and a solid-state polyvinyl butyral (PVB) is applied onto the second carbon spot to act as a reference electrode. Performance characteristics of the combined sensor are examined with chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS). Increase effect of rGO on the interfacial double-layer capacitance of the sensing membrane and consequently on the potential stability is confirmed. The developed combined sensor (strip cell) displays a Nernstian slope of -58.2 ± 0.3 mV/decade (R2 = 0.9994) over the linear range 8.5 × 10-7 - 6.9 × 10-2 M with a detection limit of 2.7 ± 0.3 × 10-7 M. The sensor shows remarkable selectivity toward various related compounds especially those commonly used by the COVID-19 patients such as paracetamol, ascorbic acid and dextromethorphan. The assay method is validated and proved to be satisfactory for direct potentiometric determination of LOS-K in some pharmaceutical formulations and in spiked human urine samples. An average recovery of 96.3 ± 0.3-98.7 ± 0.6% of the nominal or spiked concentration and a mean relative standard deviation of ±0.6% are obtained. The use of an indicating and a reference electrodes combined into a single flexible disposable paper platform enables applications to a minimum sample volume due to the close proximity of the responsive membrane and the liquid junction. The efficiency of the proposed sensor in complex urine matrix suggests its application in hospitals for rapid diagnosis of overdose patients and for quality control/quality assurance tests in pharmaceutical industry.


Subject(s)
COVID-19 , Molecularly Imprinted Polymers , Humans , Losartan , Carbon
6.
Mikrochim Acta ; 189(8): 287, 2022 07 19.
Article in English | MEDLINE | ID: covidwho-1935815

ABSTRACT

A dual recognition biosensor was developed via introducing aptamer strings and molecular imprinting polymer (MIP) for the selective detection of intact SARS-CoV-2 virus based on screen printed carbon electrode (SPCE) modified with nickel-benzene tricarboxylic acid-metal-organic framework (Ni3(BTC)2 MOF) synthesized by in situ growth method, SARS-CoV-2 S protein-specific amino-aptamer and electropolymerization of dopamine (ePDA). The proposed biosensor showed an excellent linear relationship between charge transfer resistance (Rct) and increase in virus concentration in the range 10 to 108 plaque-forming units/mL (PFU/mL) with a low detection limit of 3.3 ± 0.04 PFU/mL and response time of 20 min. Compared with single-element sensors (aptamer or MIP), it showed higher selectivity for  the SARS-CoV-2 virus and facilitated detection in real samples.


Subject(s)
COVID-19 , Molecular Imprinting , COVID-19/diagnosis , Humans , Molecular Imprinting/methods , Polymers/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
7.
Nano Futures ; 6(2):23, 2022.
Article in English | Web of Science | ID: covidwho-1895744

ABSTRACT

Pandemics such as COVID-19 have highlighted the importance of point-of-care sensors for testing, tracing, and treatment to minimize and manage infection. Biosensors have been widely deployed in portable devices such as glucose sensors and pregnancy tests. Their development for point-of-exposure virus detection or point-of-care devices is anticipated but their reliability for the accurate detection of viruses is critical. Nanomaterials, such as metal nanoparticles (NPs), magnetic NPs, quantum dots, carbon-based nanomaterials, and molecularly imprinted polymer (MIP) NPs, have been utilized in biosensors to enhance sensitivity. Molecular imprinting is a cost-effective method to synthesize polymers for selective binding, which have excellent properties as biosensors. More research on MIP NPs can be expected in the near future. The utilization of nanomaterials in several types of transducers for biosensor devices is also illustrated to give an overview of their use. Finally, a summary is given together with a future perspective on how biosensors can be further developed as reliable, portable viral biosensors.

8.
Molecules ; 27(10)2022 May 21.
Article in English | MEDLINE | ID: covidwho-1875717

ABSTRACT

A novel molecularly imprinted polymer (MIP) has been developed based on a simple and sustainable strategy for the selective determination of citalopram (CTL) using screen-printed carbon electrodes (SPCEs). The MIP layer was prepared by electrochemical in situ polymerization of the 3-amino-4 hydroxybenzoic acid (AHBA) functional monomer and CTL as a template molecule. To simulate the polymerization mixture and predict the most suitable ratio between the template and functional monomer, computational studies, namely molecular dynamics (MD) simulations, were carried out. During the experimental preparation process, essential parameters controlling the performance of the MIP sensor, including CTL:AHBA concentration, number of polymerization cycles, and square wave voltammetry (SWV) frequency were investigated and optimized. The electrochemical characteristics of the prepared MIP sensor were evaluated by both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Based on the optimal conditions, a linear electrochemical response of the sensor was obtained by SWV measurements from 0.1 to 1.25 µmol L-1 with a limit of detection (LOD) of 0.162 µmol L-1 (S/N = 3). Moreover, the MIP sensor revealed excellent CTL selectivity against very close analogues, as well as high imprinting factor of 22. Its applicability in spiked river water samples demonstrated its potential for adequate monitoring of CTL. This sensor offers a facile strategy to achieve portability while expressing a willingness to care for the environment.


Subject(s)
Molecular Imprinting , Molecularly Imprinted Polymers , Citalopram , Computer Simulation , Electrochemical Techniques/methods , Molecular Imprinting/methods
9.
ACS Sens ; 7(4): 1122-1131, 2022 04 22.
Article in English | MEDLINE | ID: covidwho-1788266

ABSTRACT

Rapid antigen tests are currently used for population screening of COVID-19. However, they lack sensitivity and utilize antibodies as receptors, which can only function in narrow temperature and pH ranges. Consequently, molecularly imprinted polymer nanoparticles (nanoMIPs) are synthetized with a fast (2 h) and scalable process using merely a tiny SARS-CoV-2 fragment (∼10 amino acids). The nanoMIPs rival the affinity of SARS-CoV-2 antibodies under standard testing conditions and surpass them at elevated temperatures or in acidic media. Therefore, nanoMIP sensors possess clear advantages over antibody-based assays as they can function in various challenging media. A thermal assay is developed with nanoMIPs electrografted onto screen-printed electrodes to accurately quantify SARS-CoV-2 antigens. Heat transfer-based measurements demonstrate superior detection limits compared to commercial rapid antigen tests and most antigen tests from the literature for both the alpha (∼9.9 fg mL-1) and delta (∼6.1 fg mL-1) variants of the spike protein. A prototype assay is developed, which can rapidly (∼15 min) validate clinical patient samples with excellent sensitivity and specificity. The straightforward epitope imprinting method and high robustness of nanoMIPs produce a SARS-CoV-2 sensor with significant commercial potential for population screening, in addition to the possibility of measurements in diagnostically challenging environments.


Subject(s)
COVID-19 , Molecular Imprinting , Nanoparticles , Antibodies , COVID-19/diagnosis , Humans , Molecularly Imprinted Polymers , Nanoparticles/chemistry , Point-of-Care Systems , SARS-CoV-2
10.
Biosensors (Basel) ; 12(3)2022 Feb 22.
Article in English | MEDLINE | ID: covidwho-1760366

ABSTRACT

Recent developments of point-of-care testing (POCT) and in vitro diagnostic medical devices have provided analytical capabilities and reliable diagnostic results for rapid access at or near the patient's location. Nevertheless, the challenges of reliable diagnosis still remain an important factor in actual clinical trials before on-site medical treatment and making clinical decisions. New classes of POCT devices depict precise diagnostic technologies that can detect biomarkers in biofluids such as sweat, tears, saliva or urine. The introduction of a novel molecularly imprinted polymer (MIP) system as an artificial bioreceptor for the POCT devices could be one of the emerging candidates to improve the analytical performance along with physicochemical stability when used in harsh environments. Here, we review the potential availability of MIP-based biorecognition systems as custom artificial receptors with high selectivity and chemical affinity for specific molecules. Further developments to the progress of advanced MIP technology for biomolecule recognition are introduced. Finally, to improve the POCT-based diagnostic system, we summarized the perspectives for high expandability to MIP-based periodontal diagnosis and the future directions of MIP-based biosensors as a wearable format.


Subject(s)
Biosensing Techniques , Molecular Imprinting , Biosensing Techniques/methods , Humans , Molecularly Imprinted Polymers , Point-of-Care Systems , Point-of-Care Testing , Sweat
11.
Mikrochim Acta ; 189(3): 125, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1712245

ABSTRACT

A novel electrochemical sensor is reported for the detection of the antiviral drug favipiravir based on the core-shell nanocomposite of flower-like molybdenum disulfide (MoS2) nanospheres and molecularly imprinted polymers (MIPs). The MoS2@MIP core-shell nanocomposite was prepared via the electrodeposition of a MIP layer on the MoS2 modified electrode, using o-phenylenediamine as the monomer and favipiravir as the template. The selective binding of target favipiravir at the MoS2@MIP core-shell nanocomposite produced a redox signal in a concentration dependent manner, which was used for the quantitative analysis. The preparation process of the MoS2@MIP core-shell nanocomposite was optimized. Under the optimal conditions, the sensor exhibited a wide linear response range of 0.01 ~ 100 nM (1.57*10-6 ~ 1.57*10-2 µg mL-1) and a low detection limit of 0.002 nM (3.14*10-7 µg mL-1). Application of the sensor was demonstrated by detecting favipiravir in a minimum amount of 10 µL biological samples (urine and plasma). Satisfied results in the recovery tests indicated a high potential of favipiravir monitoring in infectious COVID-19 samples.


Subject(s)
Amides/analysis , Antiviral Agents/analysis , Disulfides/chemistry , Molecularly Imprinted Polymers/chemistry , Molybdenum/chemistry , Nanocomposites/chemistry , Nanospheres/chemistry , Pyrazines/analysis , Amides/blood , Amides/therapeutic use , Amides/urine , Antiviral Agents/blood , Antiviral Agents/therapeutic use , Antiviral Agents/urine , COVID-19/virology , Electrochemical Techniques/methods , Humans , Limit of Detection , Oxidation-Reduction , Pyrazines/blood , Pyrazines/therapeutic use , Pyrazines/urine , Reproducibility of Results , SARS-CoV-2/isolation & purification , COVID-19 Drug Treatment
12.
Int J Mol Sci ; 23(3)2022 Jan 22.
Article in English | MEDLINE | ID: covidwho-1686809

ABSTRACT

Recently, the studies on developing sensors and biosensors-with an obvious interdisciplinary character-have drawn the attention of many researchers specializing in various fundamental, but also complex domains such as chemistry, biochemistry, physics, biophysics, biology, bio-pharma-medicine, and bioengineering. Along these lines, the present paper is structured into three parts, and is aimed at synthesizing the most relevant studies on the construction and functioning of versatile devices, of electrochemical sensors and biosensors, respectively. The first part presents examples of the most representative scientific research focusing on the role and the importance of the phenylalanine, tyrosine, and tryptophan amino acids, selected depending on their chemical structure and their impact on the central nervous system. The second part is dedicated to presenting and exemplifying conductor polymers and molecularly imprinted polymers used as sensitive materials in achieving electrochemical sensors and biosensors. The last part of the review analyzes the sensors and biosensors developed so far to detect amino acids with the aid of conductor polymers and molecularly imprinted polymers from the point of view of the performances obtained, with emphasis on the detection methods, on the electrochemical reactions that take place upon detection, and on the electroanalytical performances. The present study was carried out with a view to highlighting, for the benefit of specialists in medicine and pharmacy, the possibility of achieving and purchasing efficient devices that might be used in the quality control of medicines, as well as in studying and monitoring diseases associated with these amino acids.


Subject(s)
Biosensing Techniques/instrumentation , Electrochemical Techniques/methods , Molecular Imprinting/methods , Molecularly Imprinted Polymers/chemistry , Phenylalanine/analysis , Tryptophan/analysis , Tyrosine/analysis , Amino Acids/analysis , Polymers/chemistry
13.
Biosensors (Basel) ; 12(1)2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1640558

ABSTRACT

Rapid, selective, and cost-effective detection and determination of clinically relevant biomolecule analytes for a better understanding of biological and physiological functions are becoming increasingly prominent. In this regard, biosensors represent a powerful tool to meet these requirements. Recent decades have seen biosensors gaining popularity due to their ability to design sensor platforms that are selective to determine target analytes. Naturally generated receptor units have a high affinity for their targets, which provides the selectivity of a device. However, such receptors are subject to instability under harsh environmental conditions and have consequently low durability. By applying principles of supramolecular chemistry, molecularly imprinted polymers (MIPs) can successfully replace natural receptors to circumvent these shortcomings. This review summarizes the recent achievements and analytical applications of electrosynthesized MIPs, in particular, for the detection of protein-based biomarkers. The scope of this review also includes the background behind electrochemical readouts and the origin of the gate effect in MIP-based biosensors.


Subject(s)
Biosensing Techniques , Molecular Imprinting , Biomimetics , Biosensing Techniques/instrumentation , Equipment Design , Molecular Imprinting/methods , Molecularly Imprinted Polymers , Polymers/chemistry , Proteins
14.
Sens Actuators B Chem ; 353: 131160, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1537084

ABSTRACT

The continued spread of the coronavirus disease and prevalence of the global pandemic is exacerbated by the increase in the number of asymptomatic individuals who unknowingly spread the SARS-CoV-2 virus. Although remarkable progress is being achieved at curtailing further rampage of the disease, there is still the demand for simple and rapid diagnostic tools for early detection of the COVID-19 infection and the following isolation. We report the fabrication of an electrochemical sensor based on a molecularly imprinted polymer synthetic receptor for the quantitative detection of SARS-CoV-2 spike protein subunit S1 (ncovS1), by harnessing the covalent interaction between 1,2-diols of the highly glycosylated protein and the boronic acid group of 3-aminophenylboronic acid (APBA). The sensor displays a satisfactory performance with a reaction time of 15 min and is capable of detecting ncovS1 both in phosphate buffered saline and patient's nasopharyngeal samples with LOD values of 15 fM and 64 fM, respectively. Moreover, the sensor is compatible with portable potentiostats thus allowing on-site measurements thereby holding a great potential as a point-of-care testing platform for rapid and early diagnosis of COVID-19 patients.

15.
Biosens Bioelectron ; 196: 113729, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1482463

ABSTRACT

Herein, a novel molecularly imprinted polymer (MIP) based electrochemical sensor for the determination of the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2-RBD) has been developed. For this purpose, first, a macroporous gold screen-printed electrode (MP-Au-SPE) has been fabricated. The MIP was then synthesized on the surface of the MP-Au-SPE through the electro-polymerization of ortho-phenylenediamine in the presence of SARS-CoV-2-RBD molecules as matrix polymer, and template molecules, respectively. During the fabrication process, the SARS-CoV-2-RBD molecules were embedded in the polymer matrix. Subsequently, the template molecules were removed from the electrode by using alkaline ethanol. The template molecules removal was studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), and attenuated total reflectance spectroscopy (ATR). The fabricated MIP film acted as an artificial recognition element for the measurement of SARS-CoV-2-RBD. The EIS technique was used for the measurement of the SARS-CoV-2-RBD in the saliva solution. The electron transfer resistance (Ret) of the MIP-based sensor in a ferri/ferrocyanide solution increased as the SARS-CoV-2-RBD concentration increased due to the occupation of the imprinted cavities by the SARS-CoV-2-RBD. The MIP-based sensor exhibited a good response to the SARS-CoV-2-RBD in the concentration range between 2.0 and 40.0 pg mL-1 with a limit of detection of 0.7 pg mL-1. The obtained results showed that the fabricated MIP sensor has high selectivity sensitivity, and stability.


Subject(s)
Biosensing Techniques , COVID-19 , Molecular Imprinting , Electrochemical Techniques , Electrodes , Gold , Humans , Limit of Detection , Molecularly Imprinted Polymers , SARS-CoV-2
16.
Mater Lett ; 306: 130898, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1415642

ABSTRACT

The importance of early diagnosis of infectious disease has been revealed well by the COVID-19 pandemic. The current methods for testing SARS-CoV-2 mainly utilize biorecognition elements. The process of production of these biorecognition elements is not only tedious, time-consuming but also costly. The molecularly imprinted polymers recently have gained considerable attention as they are stable and also offer high selectivity and specificity than conventional labels. The present review discussed the MIPs-based electrochemical nano-sensors diagnostic of SARS-CoV-2.

17.
Biosens Bioelectron ; 178: 113029, 2021 Apr 15.
Article in English | MEDLINE | ID: covidwho-1046559

ABSTRACT

The current COVID-19 pandemic caused by SARS-CoV-2 coronavirus is expanding around the globe. Hence, accurate and cheap portable sensors are crucially important for the clinical diagnosis of COVID-19. Molecularly imprinted polymers (MIPs) as robust synthetic molecular recognition materials with antibody-like ability to bind and discriminate between molecules can perfectly serve in building selective elements in such sensors. Herein, we report for the first time on the development of a MIP-based electrochemical sensor for detection of SARS-CoV-2 nucleoprotein (ncovNP). A key element of the sensor is a disposable sensor chip - thin film electrode - interfaced with a MIP-endowed selectivity for ncovNP and connected with a portable potentiostat. The resulting ncovNP sensor showed a linear response to ncovNP in the lysis buffer up to 111 fM with a detection and quantification limit of 15 fM and 50 fM, respectively. Notably, the sensor was capable of signaling ncovNP presence in nasopharyngeal swab samples of COVID-19 positive patients. The presented strategy unlocks a new route for the development of rapid COVID-19 diagnostic tools.


Subject(s)
Antigens, Viral/analysis , Biosensing Techniques/instrumentation , COVID-19 Testing/instrumentation , COVID-19/diagnosis , COVID-19/virology , Coronavirus Nucleocapsid Proteins/analysis , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Electrochemical Techniques/instrumentation , Equipment Design , Feasibility Studies , Humans , Molecular Imprinting , Nasopharynx/virology , Pandemics , Phosphoproteins/analysis , Phosphoproteins/immunology , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL